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Fluctuations in dispersion rheology
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~Received 16 February 2000!

On the basis of the mesoscopic fluctuations of excess density, an experimentally verified model is developed
to describe the effective shear viscosity and modulus of complex dispersions as a function of concentration,
frequency, and temperature. A stochastic differential equation is used in the derivation of the zero-shear
viscosity that shows large viscosity enhancement over a broad range of concentrations. The scaling behavior of
shear thinning is determined from an anomalous diffusion equation. We obtain the shear-thinning exponent
1.b.

1
2 , which depends on the tenuous fractal structure of the complex systems. The divergence of the shear

viscosity in the vicinity of a critical temperature is derived as a dynamic critical phenomenon due to thermal
fluctuations, and the critical exponent relates directly to the shear-thinning exponent.

PACS number~s!: 82.70.Dd, 05.20.2y, 83.50.Fc
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I. INTRODUCTION

The viscoelasticity of dispersions exhibits extraordinar
complex phenomena that are of scientific and technolog
importance because the materials have a wide range
phases from liquid to solid depending on composition, int
particle interactions, and frequency. The physics of ha
sphere dispersion~HSD! has been extensively investigate
in HSD the repulsive interactions between colloidal partic
play a key role in establishing structure-property relatio
ships @1–9#. For spherical colloids, explicit expressions f
the shear rate and frequency dependence of viscoelas
have been derived on the basis of the generalized Sm
chowski diffusion equation, in which both the long-ran
hydrodynamic interactions and the short-range particle in
actions are considered@4–8#. A divergence of the effective
low-shear limiting viscosity of HSD has been predicted
these mean-field theories@4–7# and verified by experimenta
data@2#. However, the particles in our complex systems w
have very irregular shapes.

When attractive interparticle forces are present, agg
gated colloids experience a significant increase in visco
at low-to-moderate volume concentrations@10–14#. As well
as hydrodynamic force and Brownian motion, different
pulsive and attractive interactions are expected to exist
operatively in complex dispersions that consist of polyme
particles, additives, and carrier fluids. This is a real-wo
problem encountered in many technological applications
presents an interesting scientific challenge. It is unlikely t
one can take accurate account of the many-body interact
between different particles and molecules by following t
familiar path of studying hard-sphere, aggregated colloids
polymer gels@15–17#. Therefore, the purpose of this paper
to find an alternative approach for explaining the many
expected properties of complex dispersions.

A wealth of information is usually associated with th
density fluctuations in dynamic shear flow. The evolution
their correlation functions leads to the derivation of theef-
fectiveshear viscosity and modulus. Three types of fluct
tion of local density will be considered. The first is the com
positional fluctuation that is related to the liquidlike an
solidlike fluctuations. The second is the time- and spa
PRE 621063-651X/2000/62~2!/2475~5!/$15.00
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dependent dynamic fluctuation. The third is thermal fluctu
tion in the vicinity of a critical temperature (Tc). The model
will then be used to explain the unusual experimental obs
vations in complex dispersions.

The experimental data are obtained from a rheome
manufactured by Rheometrics. The complex fluids consis
filled-polymer particles, rheological additives, and carr
fluids. Colorant, charge-capture additive, and polyester re
are the ingredients of the particles with irregular shapes
surfaces. The carrier fluids have the structure of hydrocar
isomers. We shall see that the rheological additives influe
not only the repulsive but also the attractive forces betw
particles. Therefore, the structure and properties of the c
plex dispersions differ completely from those of simp
HSD, in which the repulsive forces play a dominant role.

In contrast to the percolation transition of HSD, th
composition-dependent transition of the zero-shear visco
from liquid to solid is soft. In the shear-thinning regim
power-law decay is found to be valid for the real part of t
dynamic shear viscosity and modulus over decades of us
frequency range, and a non-mean-field exponent is obta
that is significantly greater than the value1

2 for HSD. The
dynamic shear viscosity is found to diverge with temperat
near Tc , which differs completely from the reported tem
perature dependence for HSD@18#. In addition, the critical
exponent for this transition may be related to the she
thinning exponent.

II. COMPOSITIONAL FLUCTUATIONS

The inhomogeneity in complex dispersions can be rep
sented by the excess number density of defects,dn5n
2^n&, where ^n& is the homogeneous average. Using t
generalized concept of Doolittle@19–20#, the shear viscosity
~h! is related to the defect volume (v) by

ln h;
1

v
; K 1

nL 5 K 1

^n& S 12
dn

^n&
1

~dn!2

^n&2 1¯ D L ~1!

for dn/^n&!1. This microscopic defect is not free volum
but is assumed to have heavier mass. Noting that^dn&50,
the relative velocity becomes
2475 ©2000 The American Physical Society
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2476 PRE 62T. S. CHOW
ln h r[ lnS h

h2
D5D~ ln h!;^~dn!2&, ~2!

where h2 is the viscosity of the carrier fluid. The densi
fluctuations (dn) will be investigated as a function of com
positional, dynamic, and thermal fluctuations in the rest
this paper.

In the study of compositional dependence, consider
change of excess number density, which is governed by
Langevin-like stochastic equation

d~dn!

df
52

dn

2fc
1m~f!, ~3!

wheref is the volume fraction of polymeric particles andm
is the noise term that is the source of fluctuations fordn. The
critical volume fractionfc is identified with the correlation
range of the compositional fluctuations@21#. Integrating Eq.
~3!, squaring it, and taking the mean, we get

^@dn~f!#2&5exp~2f/fc!E
0

fE
0

f

expS f11f2

2fc
D

3^m~f1!m~f2!&df1df2 . ~4!

Assuming the noise is uncorrelated, as in most applicatio
we have concentration-independent white noise with^m&
50 and

^m~f1!m~f2!&5Ad~f12f2!. ~5!

The constantA is determined by treatinĝdn2(0)&[^dn0
2&

as the variance of the fluctuations. This gives the strengt
the noise A5s2/fc

2 and the standard deviations
5A^(dn0)2&. Substituting Eq.~5! into Eq. ~4! yields

^@dn~f!#2&5s2@12exp~2f/fc!#. ~6!

Combining Eqs.~2! and ~6!, we obtain

ln h r5B@12exp~2f/fc!#, ~7!

whereB is a constant. Figure 1 shows that Eq.~7! provides a
good description of the zero-shear viscosity (h0) of complex

FIG. 1. Calculated zero-shear viscosity and modulus are c
pared with experimental data measured at 0.1 rad/sec and 2
The viscosity of the carrier fluid is 3.731022 P.
f
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dispersions. We have replacedh in Eq. ~7! by h0 , and cho-
sen B523.95 andfc50.216 to fit the experimental data
The intrinsic shear viscosity@h#[ limf→0 (h2h2)/h2f
5B/fc5110.9 of this system is much higher than the val
2.5 of HSD@1#. The rheological additives have significant
enhanced the intrinsic viscosity that may arise from the
tractive forces when repulsive forces are present.

Figure 1 also shows the appearance of a measurable s
modulus~G! at the critical volume fraction, which may b
interpreted as a soft transition from liquid to solid@22#. The
presence of strong attractive interactions inhibits
repulsion-dominated percolation transition observed in ha
sphere dispersion@2–5#. The concentration dependence
the shear modulus can be determined from

h0~f!5E
0

`

G~ t,f!dt. ~8!

In measurements, the frequency for the zero-shear visco
cannot reach zero but is kept very low. The low-shear lim
obtained from Eq.~7! can be approximated by a power-la
dependence upon the volume fractionf with a power of 8.2
for 0.1,f,0.4. This is much higher than the value of 5
for weakly aggregated polystyrene latex dispersions@11#.
This result strengthens the idea of strong repulsive and
tractive interactions between different particles and m
ecules that contribute to the large viscosity enhancem
over a broad range of volume fractions of complex disp
sions.

III. STRONG SHEAR THINNING

The time~t! and spatial (rW) dependence are brought int
the excess number densitydn(rW,t) by

n~ t !2^n&5E dn~rW,t !drW, ~9!

where the integration is taken over a volume element s
rounding the defect.dn(rW,t) relaxes as time goes on b
spreading over the entire medium via diffusion. Let us int
duce the density-density correlation function

C~rW,t !5
^dn~rW,t !dn~0W ,0!&

^dn2&
, ~10!

which is invariant under translations ofrW and t. It can be
treated as the Green’s function of anomalous diffusi
which vanishes whenrW and/ort is very large. In the specia
case of constant diffusion coefficient,C(rW,t) should have the
form of the familiar Gaussian spreading. However, a spa
dependent diffusion coefficient~D! is expected for complex
systems. Using the Fourier transform in space

C~qW ,t !5E C~rW,t !exp~2 iqW •rW !drW,

whereqW is the wave vector of the fluctuation, the anomalo
diffusion equation can be written as@20#

S ]

]t
2Dq22nDC~qW ,t !5d~ t !, ~11!

-
°C.
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PRE 62 2477FLUCTUATIONS IN DISPERSION RHEOLOGY
where 0<n,1. It produces a fractal dimensiondf , which
defines a self-similar scaling between wave numbers by
transformation function

q;qn
df with df5

2

22n
. ~12!

A fractal is by definition a set made of parts similar to t
whole@23#. Self-similarity is the basic notion in fractal struc
ture and is a common feature for all scaling analyses.
fractal dimensiondf is introduced in accordance with th
spatial scaling Eq.~12!. Theq22n dependence in Eq.~11! is
an ansatz since therW dependence ofD is not known. By
using Eq.~12!, Eq. ~11! is transformed to

S ]

]t
2Dnqn

2DC~qn ,t !5d~ t !, ~13!

whereqn is the wave number in the fractal space. Equat
~13! reveals that the diffusivityDn is a constant. Therefore,
C(qW n ,t) should exhibit Gaussian characteristics in frac
space. The self-similarity of the fractal has dilation symm
try as shown in Eq.~12!.

Taking the Fourier transform in time

C~qn ,v!5E
2`

`

C~qn ,t !exp~ ivt !dt,

we obtain the solution

C~v!5(
qn

1

Dnqn
22 iv

>E
0

qC r~qn!dqn

Dnqn
22 iv

, ~14!

where r is the density of states andqc is the cutoff wave
number. The number of modes per unit length along the p
of diffusion with wave number betweenq andq1dq can be
expressed in terms of the number of modes in the fra
space. Using Eq.~12!, we obtain the density of states,

r~qn!dqn;qn
df21dqn;tn

2~11df /2!dtn , ~15!

wheretn5(Dnqn
2)21 is a local relaxation time. Clearly, th

time dependence is diffusive in nature. Substituting Eq.~15!
into Eq. ~14! leads to the asymptotic solution

C~v!;2
2

df

t2df /2

iv
for vtn@1, ~16!

wheret5(Dnqc
2)21 is the macroscopic relaxation time. O

the basis of the fluctuation-dissipation theorem, the real
of the dynamic viscosity is determined from Eq.~16! as
h8(v);Im C(v);t2df/2. Introducing the shear-thinning ex
ponent

b5df /25
1

22n
, ~17!

we obtain the complex viscosity

h* ~v!5h8~v!2 ih9~v!;~12 i !~vt!2b for vt@1.
~18!
e
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Because the shear-induced microstructure of HSD ha
Gaussian distribution (n50) @4#, we can obtain the experi
mentally @3# verified b5 1

2 from Eq. ~17!. For complex sys-
tems, we are going to have12 ,b,1. The corresponding
complex shear modulus for Eq.~18! is

G* ~v!5G8~v!1 iG9~v!5 ivh* ~v!

;
11 i

t
~vt!12b for vt@1. ~19!

Equations~18! and ~19! provide the useful scaling lawsh8
;v2b and G8;v12b over three decades of frequenci
measured and shown in Figs. 2 and 3. Interestingly,b
50.93 is found to be independent of the volume fractionf
and temperatureT,Tc ~see the next section!. This b value
is higher than the reported shear-thinning exponents
b50.83 for aggregated colloids@11# and 0.80 for polymer
gels @15#. Both attractive and repulsive forces are presen

FIG. 2. Experimental data~points! for the real part of the dy-
namic shear viscosity and modulus are compared with the po
laws ~dotted lines! given by Eqs.~18! and ~19! at two different
temperatures. The volume fraction is 0.216.

FIG. 3. Experimental data~points! for the real part of the dy-
namic shear viscosity and modulus are compared with the po
laws ~dotted lines! given by Eqs.~18! and ~19! at two different
temperatures. The volume fraction is 0.274.
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2478 PRE 62T. S. CHOW
these systems. The findings reinforce what has been m
tioned earlier: we have strongly interacting particles in o
systems.

IV. DYNAMIC CRITICAL PHENOMENON

Due to the fractal structure in complex systems, the te
perature dependence of the defect volume can be writte

v~T!;2~Tc2T!a ~20!

for T,Tc , which is the melting temperature of polymer
particles. a is the critical exponent. Since the thermal e
pansion coefficient of the polymeric particles is lower th
that of the carrier fluid, a negative sign is shown in Eq.~20!.
Substituting Eq.~20! into Eq. ~1! yields

ln h8~T!;2S 12
T

Tc
D 2a

for T,Tc . ~21!

Viscosity is a nonequilibrium property of a flowing fluid
Equation~21! has the form familiar to dynamic critical phe
nomena@24#. Let us bring in the correlation length of th
thermal fluctuations@25#:

j;S 12
T

Tc
D 21

→` as T→Tc . ~22!

From Eqs.~14!, ~15!, and~17!, a scaling law can be written
down as

Im C~v!;Im E qn
df21dqn

Dnqn
22 iv

;ImS E xdf23dx

Dn~12 ivtn! D j22df

;j2~12b!, ~23!

where a substitution ofqn5x/j has been made, and the in
tegral is a well-defined complex constant. Therefore, we
tain

a52~12b!. ~24!

This is a useful relation between the critical exponent and
shear-thinning exponent. With the value ofb obtained in
Figs. 2 and 3, Eq.~24! givesa50.14, which provides a good
description of the experimental data as shown in Fig.
Equation~21! and Fig. 4 differ completely from the reporte
effect of temperature on the viscosity of HSD@18#. Equa-
tions ~21! and ~24! were derived as a dynamic critical ph
nomenon due to thermal fluctuations whose correlat
length diverges asT→Tc . For temperatures beyondTc , the
particulate structure of the dispersions break down and
fluctuations are no longer dictated by the short-range in
actions.
n-
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V. CONCLUSIONS

An experimentally verified model has been developed
describe the viscoelasticity of complex dispersions as a fu
tion of volume fraction, frequency, and temperature by a
lyzing the excess number density fluctuations that re
from the microscopic compositional, dynamic, and therm
fluctuations. On the basis of a stochastic differential eq
tion, the concentration-dependent zero shear viscosity is
rived. Strong enhancement of the effective viscosity is fou
over a broad range of concentrations caused by
depletion-induced attractive force contributions of additiv
when repulsive forces are present. This also inhibits
repulsive-dominated percolation transition observed in ha
sphere dispersion.

Strong shear thinning can be explained by solving
anomalous diffusion equation. The solution leads to the d
vation of a power-law dependence for the dynamic sh
viscosity and modulus on frequency with the shear-thinn
exponent 1.b. 1

2 depending on the fractal dimension of th
complex system. We have determinedb50.93, independen
of volume fractionf and temperature. Thisb value is higher
than the reported shear-thinning exponents for aggreg
colloids and polymer gels. This result reinforces the assum
tion that we have strongly interacting particles in the co
plex dispersions.

The divergence of the shear viscosity in the vicinity of
critical temperature has been analyzed as a dynamic cri
phenomenon due to thermal fluctuations. An interesting s
ing relation was derived between the critical exponents
lated to the defect volume and to the shear-thinning beha
of the complex viscosity. The effect of temperature on co
plex dispersion differs completely from that on hard-sph
dispersions.
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FIG. 4. Comparison of predictions of Eqs.~21! and ~24! with
experimental data for the real part of the dynamic shear visco
and modulus as a function of temperature at two different volu
fractions. The critical temperature is 75 °C.
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