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Fluctuations in dispersion rheology
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On the basis of the mesoscopic fluctuations of excess density, an experimentally verified model is developed
to describe the effective shear viscosity and modulus of complex dispersions as a function of concentration,
frequency, and temperature. A stochastic differential equation is used in the derivation of the zero-shear
viscosity that shows large viscosity enhancement over a broad range of concentrations. The scaling behavior of
shear thinning is determined from an anomalous diffusion equation. We obtain the shear-thinning exponent
1>8> % which depends on the tenuous fractal structure of the complex systems. The divergence of the shear
viscosity in the vicinity of a critical temperature is derived as a dynamic critical phenomenon due to thermal
fluctuations, and the critical exponent relates directly to the shear-thinning exponent.

PACS numbes): 82.70.Dd, 05.26-y, 83.50.Fc

[. INTRODUCTION dependent dynamic fluctuation. The third is thermal fluctua-
tion in the vicinity of a critical temperatureT(). The model
The viscoelasticity of dispersions exhibits extraordinarily will then be used to explain the unusual experimental obser-
complex phenomena that are of scientific and technologicatations in complex dispersions.
importance because the materials have a wide range of The experimental data are obtained from a rheometer
phases from liquid to solid depending on composition, internanufactured by Rheometrics. The complex fluids consist of
particle interactions, and frequency. The physics of hardfilled-polymer particles, rheological additives, and carrier
sphere dispersiofHSD) has been extensively investigated; fluids. Colorant, charge-capture additive, and polyester resin
in HSD the repulsive interactions between colloidal particlesre the ingredients of the particles with irregular shapes and
play a key role in establishing structure-property relation-surfaces. The carrier fluids have the structure of hydrocarbon
ships[1-9]. For spherical colloids, explicit expressions for isomers. We shall see that the rheological additives influence
the shear rate and frequency dependence of viscoelasticifipt only the repulsive but also the attractive forces between
have been derived on the basis of the generalized Smolgarticles. Therefore, the structure and properties of the com-
chowski diffusion equation, in which both the long-rangeplex dispersions differ completely from those of simple
hydrodynamic interactions and the short-range particle interSD, in which the repulsive forces play a dominant role.
actions are considerdd—8|. A divergence of the effective In contrast to the percolation transition of HSD, the
low-shear limiting viscosity of HSD has been predicted bycomposition-dependent transition of the zero-shear viscosity
these mean-field theori¢4—7] and verified by experimental from liquid to solid is soft. In the shear-thinning regime,
data[2]. However, the particles in our complex systems will power-law decay is found to be valid for the real part of the
have very irregular shapes. dynamic shear viscosity and modulus over decades of useful
When attractive interparticle forces are present, aggrefrequency range, and a non-mean-field exponent is obtained
gated colloids experience a significant increase in viscositjhat is significantly greater than the valgefor HSD. The
at low-to-moderate volume concentratiqd9—14. As well ~ dynamic shear viscosity is found to diverge with temperature
as hydrodynamic force and Brownian motion, different re-near T, which differs completely from the reported tem-
pulsive and attractive interactions are expected to exist coPerature dependence for H§D8]. In addition, the critical
operatively in complex dispersions that consist of polymericexponent for this transition may be related to the shear-
particles, additives, and carrier fluids. This is a real-worldthinning exponent.
problem encountered in many technological applications and
presents an interesting scientific challenge. It is unlikely that II. COMPOSITIONAL FLUCTUATIONS
one can take accurate account of the many-body interactions ) o ) ]
between different particles and molecules by following the The inhomogeneity in complex dispersions can be repre-
familiar path of studying hard-sphere, aggregated colloids, ofenteéd by the excess number density of defeéts=n
polymer gel15—17. Therefore, the purpose of this paper is ~ (N} where (n) is the homogeneous average. Using the
to find an alternative approach for explaining the many un-generalized concept of Doolitt{d9-20, the shear viscosity

expected properties of complex dispersions. () is related to the defect volume ) by

A wealth of information is usually associated with the 5
density fluctuations in dynamic shear flow. The evolution of In 7~ }N E _ i( 1 ﬁJr (én) +) )
their correlation functions leads to the derivation of #fe 77 \n (n) (n) = (n)?

fectiveshear viscosity and modulus. Three types of fluctua-

tion of local density will be considered. The first is the com-for én/(n)<1. This microscopic defect is not free volume
positional fluctuation that is related to the liquidlike and but is assumed to have heavier mass. Noting ¢da)=0,
solidlike fluctuations. The second is the time- and spacethe relative velocity becomes
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. dispersions. We have replacedn Eg. (7) by 7y, and cho-
oo/ Cumes Theon 1.0x10 senB=23.95 and¢$.=0.216 to fit the experimental data.
2 0" | Points: Xpe"meqflio_m s € The intrinsic shear viscosityf n]=lim, .o (17— 12)/ 72¢
S 40 | 08x10" g =B/ ¢.=110.9 of this system is much higher than the value
‘; ! ) 2.5 of HSD[1]. The rheological additives have significantly
' 10! ! 0.6x10 S enhanced the intrinsic viscosity that may arise from the at-
§ 3 s § tractive forces when repulsive forces are present.
5 10 - 010" g Figure 1 also shows th f ble sh
5 o . g igure 1 also shows the appearance of a measurable shear
5 . Liquid —j—Soft solid ooxic® & modulus(G) at the critical volume fraction, which may be
§ 10 ! s ' s interpreted as a soft transition from liquid to sof2R]. The
1072 ' 0 presence of strong attractive interactions inhibits the
0 0.2 0.4 0.6 repulsion-dominated percolation transition observed in hard-

Volume fraction, ¢

sphere dispersiofi2—-5]. The concentration dependence of

the shear modulus can be determined from

FIG. 1. Calculated zero-shear viscosity and modulus are com-
pared with experimental data measured at 0.1 rad/sec and 23 °C.
The viscosity of the carrier fluid is 3710 2 P.

7o) = f:Ga,@dt. ®

In measurements, the frequency for the zero-shear viscosity
cannot reach zero but is kept very low. The low-shear limit
obtained from Eq(7) can be approximated by a power-law
dependence upon the volume fractigrwith a power of 8.2
for 0.1< $<0.4. This is much higher than the value of 5.3
or weakly aggregated polystyrene latex dispersiphs|.

his result strengthens the idea of strong repulsive and at-

In nrzln(i)wm m~{(8n)?), )
72

where 7, is the viscosity of the carrier fluid. The density
fluctuations ¢n) will be investigated as a function of com-
positional, dynamic, and thermal fluctuations in the rest o

this paper. tractive interactions between different particles and mol-

hln the fstudy of comgosgona_lt dep;—:_nﬂe_nce, consgiekz)r ttr;]%cules that contribute to the large viscosity enhancement
change ol excess number density, which 1S governed by e, 5 proad range of volume fractions of complex disper-
Langevin-like stochastic equation sions

d(5n)_ on
o ——Téc“‘ﬂ(@,

€)) IIl. STRONG SHEAR THINNING

The time(t) and spatial {) dependence are brought into

where ¢ is the volume fraction of polymeric particles apd  ihe excess number densidn(r,t) by

is the noise term that is the source of fluctuationsdior The

critical volume fractiong, is identified with the correlation
range of the compositional fluctuatiofl]. Integrating Eq.
(3), squaring it, and taking the mean, we get

n(t)—(n)zf on(r,t)dr, (9)

where the integration is taken over a volume element sur-

N ¢J¢’ 1t b2 rounding the defectsn(F,t) relaxes as time goes on by
([on($)]17) =expl = ol be) fo 0 ex 2¢. spreading over the entire medium via diffusion. Let us intro-
duce the density-density correlation function
X{u(h1)u(p2))dprde,. 4 A
. L . L _ (6n(r,t)én(0,0))
Assuming the noise is uncorrelated, as in most applications, C(f,t)= > , (10)
we have concentration-independent white noise Wit {n%)

=0 and which is invariant under translations ofandt. It can be

(u( b)) (b)) =AS( by — bs). (5) treated as the Gregn S func_tlon of anomalous d|ffu'_s|on,
which vanishes when and/ort is very large. In the special

The constan® is determined by treating5n2(0)>z<5ng> case of constant diffusion coefficie@(r,t) should have the

as the variance of the fluctuations. This gives the strength derm of the fgmm.ar Gaussian Spr_eadlng. However, a space-

the noise A=c?/¢? and the standard deviationr dependent diffusion coefficieriD) is expected for complex

= \{(3ng)?). Substituting Eq(5) into Eq. (4) yields systems. Using the Fourier transform in space

([8n(#)1P)=0"[1—exp(— Pl pc)]. (6) c(g,t)= f C(F,t)exp(—iq-F)dF,
Combining Eqs(2) and(6), we obtain . .
whereq is the wave vector of the fluctuation, the anomalous
In 7, =B[1—exp(— ¢/ de)], (7)  diffusion equation can be written $20]

whereB is a constant. Figure 1 shows that Eg). provides a

J
_ 2—v = —
good description of the zero-shear viscosity) of complex (ﬂt Dg )C(q,t) o), (1)
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where O<=v<1. It produces a fractal dimensialy, which

defines a self-similar scaling between wave numbers by the

transformation function

df

g~q, with d¢=

5, (12
A fractal is by definition a set made of parts similar to the
whole[23]. Self-similarity is the basic notion in fractal struc-
ture and is a common feature for all scaling analyses. Th
fractal dimensiond; is introduced in accordance with the
spatial scaling Eq(12). Theg?~” dependence in Eq11) is

an ansatz since thé dependence ob is not known. By
using Eq.(12), Eq. (11 is transformed to

d
(E—qui)cmv,th a(t), (13

whereq, is the wave number in the fractal space. Equatio
(13) reveals that the diffusivityp, is a constant Therefore,

C(q,,t) should exhibit Gaussian characteristics in fractal
space. The self-similarity of the fractal has dilation symme-

try as shown in Eq(12).
Taking the Fourier transform in time

C(q,,,w)zf“ C(q, Hexp(i t)dt,
we obtain the solution
B 1 (%p(qg,dqg,
C(w)—% qu,%—iwzfo D,g—iw’ 4

where p is the density of states amg. is the cutoff wave

number. The number of modes per unit length along the pat

of diffusion with wave number betweanandq+dq can be
expressed in terms of the number of modes in the fract
space. Using Eq12), we obtain the density of states,

df*l

p(q,)dg,~q" SRy,

dg,~r (15
where TV:(quﬁ)*l is a local relaxation time. Clearly, the
time dependence is diffusive in nature. Substituting @&)
into Eq. (14) leads to the asymptotic solution

2 T*df/Z

dy

C(w) for w7,>1, (16)

iw

where T=(D,,q§)‘1 is the macroscopic relaxation time. On

the basis of the fluctuation-dissipation theorem, the real part

of the dynamic viscosity is determined from EL6) as
7' (0)~1m C(w)~7 %2, Introducing the shear-thinning ex-
ponent

1
2

14

B=di/2= (17)

we obtain the complex viscosity

7*(0)=7"(0)—i7"(0)~(1-i)(wr) P for or>1.
(18)

FLUCTUATIONS IN DISPERSION RHEOLOGY

2477
107
o 6 s
E 10} DU B
= b O e T B - d
q:; 5%—3-:>i:§—::-~a;ﬂ——— = a--— Er
g 10 T
© . T e
22 10° ¢=0.216, p=0.93 Tl i)
@ -
8 —— G'(w)at29°C i E e
e = 10°| —— G(at45C NS
& —- — 7(w)at29°C
~~~~~~ (o) at 45°C
2
10
0.1 1 10 100

Frequency (o, rad/sec)

FIG. 2. Experimental datgpointg for the real part of the dy-
namic shear viscosity and modulus are compared with the power
laws (dotted line$ given by Eqgs.(18) and (19) at two different

ntemperatures. The volume fraction is 0.216.

Because the shear-induced microstructure of HSD has a
Gaussian distributiony(=0) [4], we can obtain the experi-
mentally[3] verified 8= 3 from Eq.(17). For complex sys-
tems, we are going to have<g<1. The corresponding
complex shear modulus for E¢L8) is

G*(w)=G'(w)+iG"(w)=iwn* (w)

1+i

~T(a)7')17ﬁ for wr>1. (19

Equations(18) and (19) provide the useful scaling laws’
~w P and G'~w! # over three decades of frequencies
fpeasured and shown in Figs. 2 and 3. Interestingly,
=0.93 is found to be independent of the volume fractipn

#fnd temperatur@ <T (see the next sectignThis g8 value

is higher than the reported shear-thinning exponents of
=0.83 for aggregated colloidd.1] and 0.80 for polymer
gels[15]. Both attractive and repulsive forces are present in
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FIG. 3. Experimental datépointg for the real part of the dy-
namic shear viscosity and modulus are compared with the power
laws (dotted line$ given by Eqgs.(18) and (19) at two different
temperatures. The volume fraction is 0.274.



2478 T. S. CHOW PRE 62

these systems. The findings reinforce what has been men- 10° —
tioned earlier: we have strongly interacting particles in our ST
systems. o s R
£ 10
% Theory: dotted curves \g G’
IV. DYNAMIC CRITICAL PHENOMENON 5 Experiment: points \
Due to the fractal structure in complex systems, the tem- & $rTrimone
perature dependence of the defect volume can be written as .. 1¢° 40 VU -
2 w=40rad/sec R
8 | —— Gwithe=0274 bR
-~ A0t --- -- ' wi = kY
o(T) == (Te=T)* Iy |
— — 7 with ¢=0.216
. . . . 101
for T<T., which is the melting temperature of polymeric 20 40 60 80
particles. « is the critical exponent. Since the thermal ex- .
pansion coefficient of the polymeric particles is lower than Temperature (T, "C)
that of the carrier fluid, a negative sign is shown in E2f).
Substituting Eq(20) into Eq. (1) yields FIG. 4. Comparison of predictions of Eg1) and (24) with
experimental data for the real part of the dynamic shear viscosity
_ and modulus as a function of temperature at two different volume
T) ¢ fractions. The critical temperature is 75 °C
Inn'(T)~— 1—T— for T<T,. (22 ' '
Cc

V. CONCLUSIONS
Viscosity is a nonequilibrium property of a flowing fluid.
Equation(21) has the form familiar to dynamic critical phe-  An experimentally verified model has been developed to
nomena[24]. Let us bring in the correlation length of the describe the viscoelasticity of complex dispersions as a func-
thermal fluctuation$25]: tion of volume fraction, frequency, and temperature by ana-

lyzing the excess number density fluctuations that result
from the microscopic compositional, dynamic, and thermal

fluctuations. On the basis of a stochastic differential equa-
tion, the concentration-dependent zero shear viscosity is de-
rived. Strong enhancement of the effective viscosity is found

over a broad range of concentrations caused by the
From Egs.(14), (15), and(17), a scaling law can be written depletion-induced attractive force contributions of additives,

down as when repulsive forces are present. This also inhibits the
repulsive-dominated percolation transition observed in hard-
sphere dispersion.

T -1
§~(1——) —oo  as T—T,. (22

di~1g d¢—3

g X dx St hear thinni be explained by solvi

M Cl )~ | v T . 2—d; rong shear thinning can be explained by solving an
M C(w)~Im quzy—uo m(f D,(l-iwT,) ¢ anomalous diffusion equation. The solution leads to the deri-

2(1-8) vation of a power-law dependence for the dynamic shear
~¢ ' (23 viscosity and modulus on frequency with the shear-thinning
exponent > 3> 1 depending on the fractal dimension of the
complex system. We have determinge 0.93, independent
of volume fractiong and temperature. Thi8 value is higher
than the reported shear-thinning exponents for aggregated
colloids and polymer gels. This result reinforces the assump-
tion that we have strongly interacting particles in the com-

a=2(1-p). (24) plex dispersions.
The divergence of the shear viscosity in the vicinity of a
critical temperature has been analyzed as a dynamic critical
This is a useful relation between the critical exponent and th@henomenon due to thermal fluctuations. An interesting scal-
shear-thinning exponent. With the value Bfobtained in ing relation was derived between the critical exponents re-
Figs. 2 and 3, Eq.24) givesa = 0.14, which provides a good lated to the defect volume and to the shear-thinning behavior
description of the experimental data as shown in Fig. 4of the complex viscosity. The effect of temperature on com-
Equation(21) and Fig. 4 differ completely from the reported plex dispersion differs completely from that on hard-sphere
effect of temperature on the viscosity of H§D8]. Equa-  dispersions.
tions (21) and(24) were derived as a dynamic critical phe-
nomenon due to thermal fluctuations whose correlation ACKNOWLEDGMENTS
length diverges a$—T.. For temperatures beyoiq , the
particulate structure of the dispersions break down and the The author is indebted to Dr. S. K. Ahuja for his assis-
fluctuations are no longer dictated by the short-range intertance in the rheological measurements of samples provided
actions. by Dr. D. H. Pan.

where a substitution of,=x/¢ has been made, and the in-
tegral is a well-defined complex constant. Therefore, we ob
tain
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